Genomics
An Emerging Tool for Land Reclamation and Environmental Management

Scott Weston, M.Sc., P. Geo – Director, Development, Hemmera
October 29, 2014
Outline

Genomics 101

Opportunities for Genomics

Genomics in Action
 • eDNA
 • PRB’s
A Snapshot of Hemmera

250
Number of current staff

4
Number of regions we operate in

Lines of Business:

Planning and Management
- Environmental impact assessment
- Environmental monitoring
- Permitting and regulatory authorizations
- Wildlife and aquatic habitat and assessment

Site Assessment and Remediation
- Phase I and II Environmental Site Assessments
- Brownfield development
- Response planning, training, and facilitation
- Waste discharge authorizations and permits

Community Engagement and Social Sciences
- First Nations consultation and engagement
- First Nations negotiation and negotiation support
- Socio-economic baseline studies and effects assessments
Genomics 101

- Genome
- Genomics
Genomics as a tool

‘Pollution eating microbes’

• Certain microbes play a growing role in the clean-up of pollution

• Widely used in the treatment of contaminated soils and groundwater, and are being used increasingly in resource development and environmental management
The Environmental Challenge: Mine Wastewater
The Genomics Challenge
Global Landscape

- **Chile**: Metallurgical performance of industrial scale bio-heap-leaching monitored by ‘omics technologies

- **Netherlands**: 500 m³ bio-reactor treating sulfate and zinc rich water monitored by genomics for 128 weeks. US: Commercial microarrays for investigating biogeochemical, ecological and environmental processes

- **Finland**: Simulated bioleaching of poly-metallic sulfide ore was monitored by genomics

- **China**: Extremely acidic tailings in Pb/Zn mine monitored by genomics

- **Canada**: Teck, Imperial Metals, Cameco, Shell, Chevron, Suncor, Syncrude... actively involved in proof of concept ‘omics projects
Environmental DNA as a Service Offering
What is eDNA

- **Environmental DNA (eDNA)**
 - naturally occurring genetic materials that can be collected from the environment
 - gametes, dead skin cells, feathers, hair, feces, urine, egg plasma, saliva
Primer and Probe Design

- A good primer will contain an inclusive consensus sequence that incorporates all within-species variability for a species in a well-known sequence of DNA.
- Primers need to incorporate the full range of genetic variation for the target species to avoid false negatives.
- Primers need to incorporate the full range of genetic variation for closely related, co-occurring species to avoid false positives.
- Primers can be reviewed against sequences published in GenBank or against sequences obtained from tissue samples of target and co-occurring closely related species.
Consider sampling requirements to ensure they’re appropriate for the system you're sampling...
Know the species’ life history
Is there a permanently aquatic life history phase...

...or does your target taxa tadpole mature in three days, or 6 years???
Rationale & Efficacy

- More cost effective
- Reduced Type I & II errors
- eDNA methods will not transmit pathogens.
- eDNA doesn’t disturb, harm or kill both target and non-target taxa
Key Applications

- Early detection and monitoring (Presence/Not-detected) for management for:
 - Species of regulatory concern
 - Pathogens
 - Early detection of invasive species
 - Confirming eradication of invasive species
Pacific Water Shrew *(Sorex bendirii)*

- Pacific water shrew occurs in the BC lower mainland region
- Conventional methods are lethal and have a very low capture rate. Identification is also challenging.
- We have four active projects underway

<table>
<thead>
<tr>
<th>List</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC CDC</td>
<td>Red listed</td>
</tr>
<tr>
<td>COSEWIC</td>
<td>Endangered</td>
</tr>
<tr>
<td>SARA</td>
<td>Endangered S.1</td>
</tr>
</tbody>
</table>
Permeable Reactive Barriers
PRBs are like cakes...
How does a PRB work?

Clean Groundwater beyond PRB

Metal Sufides
+ Water
+ Oxygen