Optimizing Mine Soil Amendment with Waste Byproducts using Response Surface Methodologies

presented by
Greg Piorkowski, Ph.D., P.Ag.
Stantec Consulting | Dartmouth NS

Atlantic Reclamation Conference
Wolfville, NS
October 2014
Road Map

1. Waste byproducts as amendments
2. Overview of response surface methodologies
3. Applying RSM: Optimizing waste byproduct amendments for revegetating gold mine tailings and quarry substrates
Mine Soil Constraints

Infertility

- Add nutrients:
 - Organic amendment
 - Fertilizer

Physical Constraints

- Break-up soil (tillage)
- Promote aggregation (organic matter)

Toxicity

- Increase pH (lime)
- Add complexing agents:
 - Organics (compost)
 - Inorganic sorbent (iron oxides)
Organic and Liming Amendments

- **Organics**
 - Adds nutrients and organic matter
 - Biosolids, composts, agronomic waste, manures, papermill sludges, wood chips, etc.

- **Soil Acidity/pH Amendments**
 - Increased pH reduces metal bioavailability and improves nutrient retention
 - Fly ash, wood ash, FGD sludge, etc. (20 – 80% CCE)
 - Used in conjunction with lime
Mineral Soil Conditioners

- **Foundry sand**
 - Modify soil texture

- **Steel slag**
 - Combined alkaline soil amendment, sorbent and micronutrient source

- **Dredged materials**
 - Modify soil texture or form soil profile

- **Phosphogypsum**
 - Enhance soil aggregation, offset sodicity and aluminum toxicity

- **Water Treatment residuals**
 - Modify soil texture and sorb trace metals
Application Rates

• **Organic Amendments**
 – Meet plant N requirements
 – Increase soil organic matter content (2 – 5%)
 – **But**, wastes can have imbalanced nutrients or high moisture content (↑ transport costs)

• **Acidity/pH Amendment**
 – Balance acidity using calcium carbonate equivalents (CCE)
 – **But**, wastes can have soluble salts, boron, heavy metals

• **Mineral Soil Conditioners**
 – Site and objective specific, but usually up to 100 Mg/ha
 – **But**, wastes can have soluble salts and trace metals
Response Surface Methods

Purpose:
Predict operating conditions that yield an optimum response in one or more response factors

Benefits:
- Optimization-specific experiments
- Fewer experimental units and lower cost than factorial designs

Drawbacks:
- Assumes all factors are important (i.e. no treatment comparison)
- Requires advanced software for design and analysis
Research Objectives:

Verify response surface methodologies can be used for optimizing soil amendments

- Greenhouse experimentation
- Two case studies:
 - Abandoned gold mine tailings (metal-contaminated)
 - Quarry overburden (infertile)
Response: Vegetation Performance

Aboveground Biomass (Shoots)
- Maximize

Belowground biomass (Roots)
- Maximize

Root : Shoot ratio
- Balanced (~1.0)
Response: Cost

Total Cost = Materials + Quality Loss

- **Materials** = Purchase + Transport
- **Quality Loss** = Monetization of performance using Taguchi quality loss function
Case Study 1: Phytostabilization of abandoned gold mine tailings
- Municipal solid waste compost (OM & Nutrients)
- Wood chips (C:N adjustment)
- Steel slag (As adsorbent & Alkalinity)

Case Study 2: Quarry substrate revegetation
- Municipal solid waste compost (OM & Nutrients)
- Alkaline stabilized biosolids (Nutrients & Alkalinity)
- Wood chips (C:N adjustment)
Case Study 1: Phytostabilization of Abandoned Gold Mine Tailings
Study Site: Montague Gold Mine

c. 1865 – 1940
Arsenopyrite Deposit
Mercury Amalgamation
As (mg/kg): 2,600 – 43,000
Hg (mg/kg): 650 – 6,700
pH ~ 4.5 - 5.5
Sample Collection Areas
Montague Tailings

Upper

Oxidized
As available

Amend

Reduced
As bound

Lower
Component-Amount Design

- MSW Compost: 30 – 100 Mg/ha
- Wood chips: 0 – 10 Mg/ha
- Steel slag: 0 – 35 Mg/ha

Amendments varied independently
- Main effects
- Interactions

Logistics:
- Transport
- Application
- Incorporation
Greenhouse Experiment

- Seeded with tufted hairgrass (*Deschampsia cespitosa*)
- Incubated 50 days post-germination
- Measured above- and below-ground biomass
- Analyzing tissue and soil heavy metals
Response Surface Model

Shoot Biomass Root Biomass Root:Shoot Ratio Total Cost

Maximum desired
Peak observed

Maximum desired
Peak not observed

~1.0 desired
Trough observed

Minimum desired
“Plateau” observed

Optimum:
85 Mg/ha MSW compost, 24 Mg/ha steel slag and 2 Mg/ha wood chips
Case Study 2: Optimizing Organic Amendment Mixes for Quarry Soil Reclamation
Sample Collection Areas

Rock Fines

Overburden

Image © 2014 DigitalGlobe
Quarry Soils

Rock Fines – Blocks 1 and 2

Overburden – Blocks 3 and 4

Compact Infertile: <0.5% OM
Mixture-Amount Design

Blended Amendment

Amount:
30 – 100 Mg/ha

Mixture:
0 – 100% MSW Compost
0 – 100% Biosolids
0 – 10% Wood chips

Assess blending behavior and influence of total application

Why? Logistics:
• Storage
• Availability
• Incorporation
Greenhouse Experiment

Seeded with Nova Scotia Highway Mix:
40% red fescue | 20% timothy | 15% tall fescue | 15% perennial ryegrass | 15% kentucky bluegrass

Biomass harvested 50 days following germination

100 Mg/ha
100% MSW Compost
Shoots

50 – 90 Mg/ha: High proportion biosolids, lower proportions MSW and Wood

Optimized Amendment:

Rate = 60 Mg/ha

Composition = 80% biosolids, 18% compost, 2% wood

Roots

70 – 100 Mg/ha: High proportion biosolids, lower proportions MSW and Wood

Root: Shoot

30 – 70 Mg/ha: High proportion biosolids, lower proportions MSW and Wood

Total Cost

<80 Mg/ha: High proportion biosolids, lower proportions MSW and Wood
Summary

1. Response surface methods (RSM) worked well for amendment optimization in greenhouse

2. RSM-based optimization can improve project performance and economics
 - Avoid under/over-application and potential toxicity

3. Field validation is required and ongoing
 - Quarry: RSM design in field – compare against greenhouse
 - Tailings: Temporal stability ± mycorrhizal fungi
Acknowledgements

Carol Jones, Victoria, B.C.
Natalie Tashe, Victoria, B.C.
Denis Rushton, Dartmouth, N.S.
Elizabeth, Kennedy, Dartmouth, N.S.

Gordon Price, Waste Management

Anne Naeth, Land Reclamation

Mike Parsons, Geochemistry
Optimizing Mine Soil Amendment with Waste Byproducts using Response Surface Methodologies

presented by
Greg Piorkowski, Ph.D., P.Ag.
Stantec Consulting | Dartmouth NS

Atlantic Reclamation Conference
Wolfville, NS
October 2014
1. Fit statistical model for each response

2. Fit individual desirability functions

3. Maximize overall desirability

Optimum: 85 Mg/ha MSW compost, 24 Mg/ha steel slag and 2 Mg/ha wood chips
Optimum: 60 Mg/ha amendment composed of 80% biosolids, 18% MSW compost and 2% wood chips
Experimental Designs

E.g. B = biosolids (Mg/ha); F = fly ash (Mg/ha)

ANOVA-based:

\[Y = X_0 + aB + bF + cBF + \varepsilon \]

Most common!
Most appropriate?

Fixed: categorical (treatments)
Random: continuous (linear)

Response surface methods (RSM):

\[Y = X_0 + aB + bF + cB^2 + dF^2 + eBF + \varepsilon \]

All Continuous! (Required for optimization)
Model Comparison

![Graph showing model comparison]

- **Linear Model**: $y = 0.0429x + 6.7898$
 - $R^2 = 0.10188$

- **Quadratic Model**: $y = -0.0059x^2 + 0.7628x - 8.85$
 - $R^2 = 0.95306$

Variables:
- **Yield (kg/ha)**
- **Biosolids application rate (Mg/ha)**
Example: Plant Response to Biosolids

![Graph showing plant response to biosolids application rate]

Yield (kg/ha) vs **Biosolids application rate (Mg/ha)**

- **Polynomial Effect**: "Curvature" in response due to phytotoxic compounds
- **Interaction Effect**: Different response at different rates of additional factor

Amendment Toxicity: Difficult to estimate. Experiments required.